1,924 research outputs found

    Information leakage detection in boundary ambients

    Get PDF
    Abstract A variant of Mobile Ambient Calculus is introduced, called Boundary Ambient, to model multilevel security policies. Ambients that may guarantee to properly protect their content are explicitly identified as boundaries: a boundary can be seen as a resource access manager for confidential data. In this setting, we define a notion of non-interference which captures the absence of any (both direct and indirect) information leakage. Then, we guarantee non-interference by extending a control flow analysis that computes an over approximation of all ambients and capabilities that may be affected by the actual values of high level data

    Practical Padding Oracle Attacks on RSA

    Get PDF
    We revise attacks on the RSA cipher based on side-channels that leak partial information about the plaintext. We show how to compute a plaintext when only its parity is leaked. We then describe PKCS#1 v1.5 padding for RSA and we show that the simple leakage of padding errors is enough to recover the whole plaintext, even when it is unpadded or padded under another scheme. This vulnerability is well-known since 1998 but the flawed PKCS#1 v1.5 padding is still broadly in use. We discuss recent optimizations of this padding oracle attack that make it effective on commercially available cryptographic devices

    Type-Based Analysis of Generic Key Management APIs

    Get PDF
    In the past few years, cryptographic key management APIs have been shown to be subject to tricky attacks based on the improper use of cryptographic keys. In fact, real APIs provide mechanisms to declare the intended use of keys but they are not strong enough to provide key security. In this paper, we propose a simple imperative programming language for specifying strongly-typed APIs for the management of symmetric, asymmetric and signing keys. The language requires that type information is stored together with the key but it is independent of the actual low-level implementation. We develop a type-based analysis to prove the preservation of integrity and confidentiality of sensitive keys and we show that our abstraction is expressive enough to code realistic key management APIs

    Run-Time Attack Detection in Cryptographic APIs

    Get PDF
    Cryptographic APIs are often vulnerable to attacks that compromise sensitive cryptographic keys. In the literature we find many proposals for preventing or mitigating such attacks but they typically require to modify the API or to configure it in a way that might break existing applications. This makes it hard to adopt such proposals, especially because security APIs are often used in highly sensitive settings, such as financial and critical infrastructures, where systems are rarely modified and legacy applications are very common. In this paper we take a different approach. We propose an effective method to monitor existing cryptographic systems in order to detect, and possibly prevent, the leakage of sensitive cryptographic keys. The method collects logs for various devices and cryptographic services and is able to detect, offline, any leakage of sensitive keys, under the assumption that a key fingerprint is provided for each sensitive key. We define key security formally and we prove that the method is sound, complete and efficient. We also show that without key fingerprinting completeness is lost, i.e., some attacks cannot be detected. We discuss possible practical implementations and we develop a proof-of-concept log analysis tool for PKCS#11 that is able to detect, on a significant fragment of the API, all key-management attacks from the literature

    Development of security extensions based on Chrome APIs

    Get PDF
    Client-side attacks against web sessions are a real concern for many applications. Realizing protection mechanisms on the client side, e.g. as browser extensions, has become a popular approach for securing the Web. In this paper we report on our experience in the implementation of SessInt, an extension for Google Chrome that protects users against a variety of client-side attacks, and we discuss some limitations of the browser APIs that negatively impacted on the design process

    Postcards from the post-HTTP world: Amplification of HTTPS vulnerabilities in the web ecosystem

    Get PDF
    HTTPS aims at securing communication over the Web by providing a cryptographic protection layer that ensures the confidentiality and integrity of communication and enables client/server authentication. However, HTTPS is based on the SSL/TLS protocol suites that have been shown to be vulnerable to various attacks in the years. This has required fixes and mitigations both in the servers and in the browsers, producing a complicated mixture of protocol versions and implementations in the wild, which makes it unclear which attacks are still effective on the modern Web and what is their import on web application security. In this paper, we present the first systematic quantitative evaluation of web application insecurity due to cryptographic vulnerabilities. We specify attack conditions against TLS using attack trees and we crawl the Alexa Top 10k to assess the import of these issues on page integrity, authentication credentials and web tracking. Our results show that the security of a consistent number of websites is severely harmed by cryptographic weaknesses that, in many cases, are due to external or related-domain hosts. This empirically, yet systematically demonstrates how a relatively limited number of exploitable HTTPS vulnerabilities are amplified by the complexity of the web ecosystem

    Techniques for Security Checking: Non Interference vs Control Flow Analysis

    Get PDF
    Abstract We model, in a process algebra framework, a variant of the well known Wide Mouthed Frog security protocol. Its relevant security properties are addressed both from a dynamic and static point of view, having operational semantics as a common starting point. In one case, we exploit techniques based on Non-Interference, while in the other one we rely on Control Flow Analysis. We then compare these techniques

    WPSE: Fortifying Web Protocols via Browser-Side Security Monitoring

    Get PDF
    We present WPSE, a browser-side security monitor for web protocols designed to ensure compliance with the intended protocol flow, as well as confidentiality and integrity properties of messages. We formally prove that WPSE is expressive enough to protect web applications from a wide range of protocol implementation bugs and web attacks. We discuss concrete examples of attacks which can be prevented by WPSE on OAuth 2.0 and SAML 2.0, including a novel attack on the Google implementation of SAML 2.0 which we discovered by formalizing the protocol specification in WPSE. Moreover, we use WPSE to carry out an extensive experimental evaluation of OAuth 2.0 in the wild. Out of 90 tested websites, we identify security flaws in 55 websites (61.1%), including new critical vulnerabilities introduced by tracking libraries such as Facebook Pixel, all of which fixable by WPSE. Finally, we show that WPSE works flawlessly on 83 websites (92.2%), with the 7 compatibility issues being caused by custom implementations deviating from the OAuth 2.0 specification, one of which introducing a critical vulnerability

    Run-time analysis of PKCS#11 attacks

    Get PDF
    The goal of this paper is to report on the development of a tool aimed at the automatic detection of attacks against PKCS#11 devices. Instead of modifying or configuring the API, we propose a stateful run-time monitor which is able to track key usage over time, for the identification of operations that might result in the leakage of sensitive keys. We briefly report on the components developed for implementing the monitor and discuss new challenges and open issues
    • …
    corecore